LTC1592 [Linear Systems]

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range; 12位/ 14位/ 16位的SoftSpan数模转换器,具有可编程输出范围
LTC1592
型号: LTC1592
厂家: Linear Systems    Linear Systems
描述:

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
12位/ 14位/ 16位的SoftSpan数模转换器,具有可编程输出范围

转换器 数模转换器
文件: 总16页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1588/LTC1589/LTC1592  
12-/14-/16-Bit SoftSpan DACs  
with Programmable Output Range  
U
FEATURES  
DESCRIPTIO  
Six Programmable Output Ranges  
TheLTC®1588/LTC1589/LTC1592areserialinput12-/14-  
/16-bit multiplying current output DACs that operates  
Unipolar Mode: 0V to 5V, 0V to 10V  
Bipolar Mode: ±5V, ±10V, ±2.5V, 2.5V to 7.5V  
1LSB Max DNL and INL Over the Industrial  
Temperature Range  
from a single 5V supply. These SoftSpanTM DACs can be  
software-programmed for either unipolar or bipolar mode  
through a 3-wire SPI interface. In either mode, the voltage  
output range can also be software-programmed. Two  
output ranges in unipolar mode and four output ranges in  
bipolar mode are available.  
Glitch Impulse < 2nV-s  
16-Lead SSOP Package  
Power-On Reset to 0V  
Asynchronous Clear to 0V for All Ranges  
INL and DNL are accurate to 1LSB over the industrial  
temperature range in both unipolar and bipolar modes.  
True 16-bit 4-quadrant multiplication is achieved with  
on-chip four quadrant multiplication resistors. The  
LTC1588/LTC1589/LTC1592 are available in a 16-lead  
SSOP package.  
U
APPLICATIO S  
Process Control and Industrial Automation  
Precision Instrumentation  
Direct Digital Waveform Generation  
These devices include an internal deglitcher circuit that  
reduces the glitch impulse to less than 2nV-s (typ).  
Software-Controlled Gain Adjustment  
Automatic Test Equipment  
TheasynchronousclearpinresetstheLTC1588/LTC1589/  
LTC1592 to 0V in unipolar or bipolar mode.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
SoftSpan is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Programmable Output Range 16-Bit SoftSpan DAC  
V
REF  
5V  
LTC1592 Integral Nonlinearity  
5
6
+
1.0  
7
1/2 LT®1469  
0.8  
0.6  
C2  
150pF  
0.4  
0.2  
2
1
16 15  
R2  
3
4
0
R1  
R
R
REF  
R
COM  
FB  
OFS  
C1  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R1  
R2  
15pF  
0.1µF  
9
15V  
8
V
5V  
CC  
0.1µF  
I
I
OUT1  
OUT2  
5
2
3
1
14  
13  
12  
11  
10  
16-BIT DAC WITH SPAN ADJUST  
LTC1592  
V
OUT  
1/2 LT1469  
+
CLR  
CS/LD  
SCK  
SDI  
6
7
8
0
32768  
DIGITAL INPUT CODE  
49152  
16384  
65535  
4
AGND  
GND  
1588992 TA02  
–15V  
0.1µF  
SDO  
1588992 TA01  
1588992fa  
1
LTC1588/LTC1589/LTC1592  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
VCC to AGND, GND ......................................0.3V to 7V  
AGND to GND .............................. 0.3V to (VCC + 0.3V)  
GND to AGND .............................. 0.3V to (VCC + 0.3V)  
ORDER PART  
NUMBER  
TOP VIEW  
R
1
2
3
4
5
6
7
8
16 R2  
COM  
R1  
LTC1588CG  
LTC1588IG  
LTC1589CG  
LTC1589IG  
LTC1592ACG  
LTC1592AIG  
LTC1592BCG  
LTC1592BIG  
15 REF  
14 CLR  
13 CS/LD  
12 SCK  
11 SDI  
10 SDO  
R
COM to AGND, GND ................................ 0.3V to 12V  
R
OFS  
REF to AGND, GND ................................................ ±15V  
ROFS, RFB, R1, R2 to AGND, GND .......................... ±15V  
Digital Inputs to AGND, GND ....... 0.3V to (VCC + 0.3V)  
IOUT1, IOUT2 to AGND, GND.......... 0.3V to (VCC + 0.3V)  
Maximum Junction Temperature .......................... 150°C  
Operating Temperature Range  
LTC1588C/LTC1589C/LTC1592C ........... 0°C to 70°C  
LTC1588I/LTC1589I/LTC1592I........... 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
R
FB  
I
I
OUT1  
OUT2  
AGND  
GND  
9
V
CC  
G PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 150°C, θJA = 125°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = TMIN to TMAX  
,
VCC = 5V, VREF = 5V, IOUT2 = AGND = GND = 0V.  
LTC1588  
LTC1589  
LTC1592B  
LTC1592A  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
TEMPERATURE  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS  
Resolution  
12  
14  
16  
16  
Bits  
INL  
DNL  
GE  
Integral  
Nonlinearity  
(Notes 2, 3)  
T = 25°C  
±1  
±1  
±1  
±1  
±2  
±2  
±0.3 ±1  
±0.4 ±1  
LSB  
LSB  
A
T
MIN  
to T  
MAX  
Differential  
Nonlinearity  
Guaranteed  
Monotonic (Note 3)  
T
MIN  
to T  
±1  
±1  
±1  
±0.2 ±1  
LSB  
MAX  
Gain Error  
All Output Ranges  
(Note 3)  
T = 25°C  
–0.20 ±3  
–0.22 ±3  
–1.0 ±4  
–1.3 ±6  
–3 ±16  
–4 ±24  
–2 ±16  
–3 ±16  
LSB  
LSB  
A
T
MIN  
to T  
MAX  
BZE  
Bipolar Zero Error All Bipolar Ranges  
(Note 3)  
T = 25°C  
±1  
±1  
±2.5  
±4.0  
±10  
±16  
±5  
±8  
LSB  
LSB  
A
T
MIN  
to T  
MAX  
Gain Temperature Gain/Temperature  
3
3
3
1
3
ppm/°C  
Coefficient  
(Note 4)  
I
I
Leakage  
(Note 5)  
T = 25°C  
±5  
±15  
±5  
±15  
±5  
±15  
±5  
±15  
nA  
nA  
LKG  
OUT1  
A
Current  
T
MIN  
to T  
MAX  
PSRR  
Power Supply  
Rejection  
V
CC  
= 5V ±10%  
±0.01±0.15  
±0.05 ±0.5  
±2  
±0.2 ±2  
LSB/V  
1588992fa  
2
LTC1588/LTC1589/LTC1592  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are TA = TMIN to TMAX, VCC = 5V, VREF = 5V, IOUT2 = AGND = GND = 0V.  
SYMBOL PARAMETER  
Reference Input  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
R
DAC Input Resistance (Unipolar)  
(Note 6)  
5
7
10  
20  
kΩ  
kΩ  
REF  
R1, R2 R1, R2 Resistance  
(Notes 6, 11)  
10  
14  
R
R
Offset Resistance (Bipolar)  
±5V, ±10V, ±2.5V Ranges  
–2.5V to 7.5V Range  
10  
20  
14  
28  
20  
40  
kΩ  
kΩ  
OFS  
Feedback Resistance (Unipolar)  
Feedback Resistance (Bipolar)  
5V Range  
10V Range  
5
10  
7
14  
10  
20  
kΩ  
kΩ  
FB  
±5V and –2.5V to 7.5V Ranges  
±10V Range  
±2.5V Range  
10  
20  
5
14  
28  
7
20  
40  
10  
kΩ  
kΩ  
kΩ  
Analog Outputs (Note 4)  
Output Capacitance (I  
C
)
OUT1  
DAC Load All 1s  
DAC Load All 0s  
160  
100  
pF  
pF  
OUT  
AC Performance (Note 4)  
Settling Time  
5V Range, 0V to 5V Step with LT1468 (Note 7)  
(Note 10)  
2
2
µs  
Midscale Glitch Impulse  
nV-s  
Multiplying Feedthrough Error  
Total Harmonic Distortion  
Output Noise Voltage Density  
V
= ±10V, 10kHz Sine Wave  
1
mV  
P-P  
REF  
THD  
(Note 8) Multiplying  
(Note 9) At I  
108  
11  
dB  
nV/Hz  
OUT1  
Digital Inputs  
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Input Current  
2.4  
V
V
IH  
IL  
0.8  
±1  
8
I
µA  
pF  
IN  
C
Digital Input Capacitance  
V
= 0V (Note 4)  
IN  
IN  
Digital Outputs  
V
V
Digital Output High Voltage  
Digital Output Low Voltage  
I
I
= 200µA  
4
V
V
OH  
OL  
OH  
OL  
= 1.6mA  
0.4  
Timing Characteristics  
t
t
t
t
t
t
t
t
t
t
t
Serial Input Valid to SCK Setup Time  
Serial Input Valid to SCK Hold Time  
SCK Pulse Width High  
60  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
35  
35  
360  
35  
0
3
SCK Pulse Width Low  
4
CS/LD Pulse High Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
5
6
7
SCK to SDO Propagation Delay  
SCK Low to CS/LD Low  
C
= 50pF  
LOAD  
20  
35  
100  
35  
180  
8
9
Clear Pulse Low Width  
10  
11  
CS/LD High to SCK Positive Edge  
SCK Frequency  
Non-Daisy Chain (Note 12)  
Daisy Chain (Note 13)  
14.2  
4.1  
MHz  
MHz  
1588992fa  
3
LTC1588/LTC1589/LTC1592  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are TA = TMIN to TMAX, VCC = 5V, VREF = 5V, IOUT2 = AGND = GND = 0V.  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
4.5  
5
5.5  
10  
V
CC  
I
Supply Current, V  
Digital Inputs = 0V or V  
CC  
µA  
CC  
CC  
Note 9: Calculation from e = 4kTRB where: k = Boltzmann constant  
(1.38E-23 J/°K); R = resistance (); T = temperature (°K); B = bandwidth  
(Hz).  
Note 10: Midscale transition code: 32767 to 32768 for the LTC1592, 8191  
to 8192 for the LTC1589, 2047 to 2048 for the LTC1588.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: ±1LSB = ±0.0015% of full scale = ±15.3ppm of full scale  
(LTC1592). ±1LSB = ±0.006% of full scale = ±61.2ppm of full scale  
(LTC1589). ±1LSB = 0.024% of full scale = ±244.8ppm of full scale  
(LTC1588).  
n
Note 11: R1 and R2 are measured between R1 and R , R2 and R  
COM  
.
COM  
Note 3: Using internal feedback resistor.  
Note 12: If a continuous clock is used with data changing on the rising  
edge of SCK, setup and hold time (t , t ) will limit the maximum clock  
Note 4: Guaranteed by design, not subject to test.  
1
2
frequency. If data changes on the falling edge of SCK then the setup time  
will limit the maximum clock frequency to 8MHz (continuous 50% duty  
cycle clock).  
Note 5: I  
with DAC register loaded to all 0s.  
OUT1  
Note 6: Typical temperature coefficient is 100ppm/°C.  
Note 7: To 0.0015% for a full-scale change, measured from the falling  
edge of LD for the LTC1592 only.  
Note 8: REF = 6V  
Note 13: SDO propagation delay and SDI setup time (t , t ) limit the  
8
1
maximum clock frequency for daisy chaining.  
at 1kHz. DAC register loaded with all 1s. Output  
RMS  
amplifier = LT1468.  
U W  
(LTC1588/LTC1589/LTC1592)  
TYPICAL PERFOR A CE CHARACTERISTICS  
Supply Current vs Input Voltage  
Logic Threshold vs Supply Voltage  
Midscale Glitch Impulse  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
40  
30  
20  
10  
V
CC  
= 5V  
USING AN LT1468  
ALL DIGITAL INPUTS  
TIED TOGETHER  
C
V
= 30pF  
FEEDBACK  
REF  
= 10V  
0
1nV-s TYPICAL  
–10  
–20  
30  
40  
0
2
3
4
5
6
7
1
0
1
2
3
4
5
0.2  
0.4  
TIME (µs)  
0.8  
0
1.0  
0.6  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
1588992 G10  
1588992 G09  
1588992 G03  
1588992fa  
4
LTC1588/LTC1589/LTC1592  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC1588)  
Integral Nonlinearity  
Differential Nonlinearity  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
800  
1600  
2400  
3200  
4095  
0
800  
1600  
2400  
3200  
4095  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1588992 G11  
1588992 G12  
(LTC1589)  
Integral Nonlinearity  
Differential Nonlinearity  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
4112  
8224  
12336  
16383  
0
4112  
8224  
12336  
16383  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
1588992 G13  
1588992 G14  
(LTC1592)  
Integral Nonlinearity (INL)  
Integral Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Differential Nonlinearity (DNL)  
1.0  
1.0  
1.0  
0.8  
0.8  
0.6  
0.8  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
0
32768  
49152  
0
32768  
49152  
16384  
65535  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
16384  
65535  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
REFERENCE VOLTAGE (V)  
1588992 G02  
1588992 G01  
1588992 G05  
1588992fa  
5
LTC1588/LTC1589/LTC1592  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS (LTC1592)  
Differential Nonlinearity  
vs Reference Voltage  
in Unipolar Mode  
Integral Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
0.2  
0.4  
0.6  
0.8  
–1.0  
0.2  
0.4  
0.6  
0.8  
–1.0  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
1588992 G06  
1588992 G07  
Differential Nonlinearity  
vs Reference Voltage  
in Bipolar Mode  
Full-Scale Settling Waveform  
1.0  
0.8  
0.6  
LD PULSE  
5V/DIV  
0.4  
0.2  
GATED  
SETTLING  
WAVEFORM  
500µV/DIV  
0
0.2  
0.4  
0.6  
0.8  
–1.0  
500ns/DIV  
1592 G04  
USING LT1468 OP AMP  
CFEEDBACK = 20pF  
0V TO 10V STEP  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
REFERENCE VOLTAGE (V)  
1588992 G08  
U
U
U
PI FU CTIO S  
RCOM (Pin 1): Center Tap Point of the Two Bipolar Resis-  
tors R1 and R2. Normally tied to the inverting input of an  
external amplifier. When these resistors are not used,  
connect this pin to ground. The absolute maximum volt-  
age range on this pin is 0.3V to 12V.  
ROFS (Pin3):BipolarOffsetNetwork. Thispinprovidesthe  
offset of the output voltage range for bipolar modes.  
Accepts up to ±15V. Normally tied to R1 and the reference  
input voltage VREF (5V). Alternatively, this pin may be  
driven from a different voltage than VREF  
.
R1 (Pin 2): Bipolar Resistor R1. The main reference input  
VREF, typically 5V. Accepts up to ±15V. Normally tied to  
ROFS (Pin 3) and the reference input voltage VREF (5V).  
When not used connect this pin to ground.  
RFB (Pin4):FeedbackNetwork.Normallytiedtotheoutput  
of the current to voltage converter op amp. Range limited  
to ±15V.  
1588992fa  
6
LTC1588/LTC1589/LTC1592  
U
U
U
PI FU CTIO S  
IOUT1 (Pin 5): True DAC Current Output. Tied to the  
inverting input of the current-to-voltage op amp.  
SCK (Pin 12): Serial Interface Clock. Data on the SDI pin  
isshiftedintotheinputshiftregisteronrisingedgeofSCK.  
IOUT2 (Pin 6): Complement of DAC Current Output. Nor-  
CS/LD (Pin 13): Chip Select Input. When CS/LD is low,  
SCKisenabledforshiftingdataintotheinputshiftregister.  
WhenCS/LDispulledhigh,SCKisdisabledandthecontrol  
logic executes the control word (the first 4 bits of the input  
data stream as shown in Table 1).  
mally tied to AGND pin.  
AGND (Pin 7): Analog Ground. Tie to the system’s analog  
ground plane.  
GND (Pin 8): Ground. Tie to the system’s analog ground  
plane.  
CLR (Pin 14): When CLR is taken to a logic low, it sets the  
DAC output to 0V and all internal registers to zero code.  
VCC (Pin 9): Positive Supply Input. 4.5V VCC 5.5V.  
Requires a 0.1µF bypass capacitor to ground.  
REF (Pin 15): DAC Reference Input. Typically 5V, accepts  
up to ±15V.  
SDO(Pin10): SerialDataOutput. Dataatthispinisshifted  
out on the rising edge of SCK.  
R2 (Pin 16): Bipolar Resistor R2. Normally tied to the DAC  
referenceinputREF(Pin15)andtheoutputoftheinverting  
amplifier tied to RCOM (Pin 1).  
SDI (Pin 11): Serial Data Input.  
U
U
FU CTIO TABLE  
Table 1  
Internal Register Status  
SREG  
DATA WORD  
Dn IN INPUT  
BUF1  
BUF2  
DAC  
BUFFER  
(DAC OUTPUT)  
No Change  
Dn  
COMMAND  
OPERATION  
EACH COMMAND IS EXECUTED  
ON THE RISING EDGE OF CS/LD  
DAC  
OUTPUT  
RANGE  
No Change  
No Change  
No Change  
INPUT  
C3 C2 C1 C0  
SHIFT REGISTER BUFFER  
Dn  
X
Dn  
Dn  
Dn  
Dn  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Copy Data Word Dn in SReg to Buf1  
Copy the Data in Buf1 to Buf2  
Copy Data Word Dn in SReg to Buf1 and Buf2  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Reserved (Do Not Use)  
Set Range to 5V. Copy Dn in SReg to Buf1 and Buf2  
Set Range to 10V. Copy Dn in SReg to Buf1 and Buf2  
Set Range to ±5V. Copy Dn in SReg to Buf1 and Buf2  
Set Range to ±10V. Copy Dn in SReg to Buf1 and Buf2  
Set Range to ±2.5V. Copy Dn in SReg to Buf1 and Buf2  
Set Range to –2.5V to 7V. Copy Dn in SReg to Buf1 and Buf2  
Reserved (Do Not Use)  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
Dn  
5V  
10V  
±5V  
±10V  
±2.5V  
–2.5V to 7.5V  
X
No Change No Change  
No Change  
No Operation  
Data Word Dn (n = 0 to 15) is the last 16 bits shifted into the input shift register SReg that corresponds to the DAC code.  
1588992fa  
7
LTC1588/LTC1589/LTC1592  
W
BLOCK DIAGRA  
SDI  
BUF1  
BUF2  
SREG  
12-/14-/16-BIT  
DATA WORD  
BUFFER 12/14/16 BUFFER 12/14/16  
BITS BITS  
12-/14-/16-BIT DAC  
SPAN ADJUST  
Dn  
SCK  
24-BIT  
SHIFT  
REGISTER  
4 BIT  
COMMAND  
WORD  
DECODER  
1588992 BD  
8-BIT  
SHIFT  
REGISTER  
SDO  
CS/LD  
W U  
W
TI I G DIAGRA  
t
1
t
t
t
t
4
6
2
3
1
2
23  
24  
SCK  
t
t
11  
9
SDI  
t
t
7
5
CS/LD  
SDO  
t
8
1588992 TD  
1588992fa  
8
LTC1588/LTC1589/LTC1592  
U
OPERATIO  
INPUT WORD (LTC1588)  
COMMAND  
DON’T CARE  
DATA (12 BITS + 4 DON’T-CARE BITS)  
X
X
X
D6  
D5 D4 D3 D2 D1  
D0  
X
X
X
X
X
C3  
C1  
X
D11 D10 D9 D8  
MSB  
D7  
C2  
C0  
1588992 TD4  
LSB  
INPUT WORD (LTC1589)  
COMMAND  
DON’T CARE  
DATA (14 BITS + 2 DON’T-CARE BITS)  
X
X
X
X
X
D12  
D6  
D0  
X
C3  
C1  
X
D13  
D11 D10 D9 D8  
D5 D4 D3 D2 D1  
D7  
C2  
C0  
C0  
1588992 TD3  
MSB  
LSB  
INPUT WORD (LTC1592)  
COMMAND  
DON’T CARE  
DATA (16 BITS)  
D6  
D5 D4 D3 D2 D1  
X
D12  
D0  
C3  
C1  
X
D15 D14 D13  
MSB  
D11 D10 D9 D8  
D7  
C2  
LSB  
1588992 TD2  
Serial Interface  
clocked to all ICs, then the CS/LD signal is pulled high to  
update all of them simultaneously.  
When the CS/LD is brought to a logic low, the data on the  
SDIinputisloadedintotheshiftregisterontherisingedge  
of the clock. A 4-bit command word (C3 C2 C1 C0),  
followed by four “don’t care” bits and 16 data bits  
(MSB-first)istheminimumloadingsequencerequiredfor  
the LTC1588/LTC1589/LTC1592. When the CS/LD is  
brought to a logic high, the clock is disabled internally and  
the command word is executed.  
Power-On Reset and Clear  
When the power supply is first turned on, the LTC1588/  
LTC1589/LTC1592 will power up in 5V unipolar mode (C3  
C2 C1 C0 = 1000). All the internal registers are set to zeros  
and the DAC is set to zero code.  
The LTC1588/LTC1589/LTC1592 must first be pro-  
grammed in either unipolar or bipolar mode. There are six  
operating modes available and can be software-pro-  
grammed by the command word. When a CLR signal is  
brought to low, it clears all internal registers to zero. The  
DAC output voltage goes to zero volts. If an update DAC  
command (C3 C2 C1 C0 = 0001) is issued immediately  
after the CLR signal, the DAC output remains at zero volts.  
If no daisy-chaining is required, the input stream can be  
24-bitwideasshowninFigure1a.Thefirstfourbitsarethe  
command word, followed by four “don’t care” bits, then a  
16-bit data word. The last four bits (LSBs) of this 16-bit  
data word are don’t cares for the LTC1588. For the  
LTC1589, the last 2 bits of the 16-bit data word are don’t  
cares.  
IfaCLRsignalisgivenwithina100nsintervalimmediately  
after CS/LD goes high, the user should reload the output  
range.  
If daisy-chaining is required or the input needs to be  
writtenintwo16-bitwidesegments, thentheinputstream  
must be 32-bit wide and the first 8 bits loaded are “don’t  
care” bits. The remaining bits work the same as a 24-bit  
stream which is described in the previous paragraph. The  
outputoftheinternal32-bitshiftregisterisavailableonthe  
SDO pin 32 clock cycles later.  
Output Range Programming  
There are two output ranges available in unipolar mode  
and four output ranges available in bipolar mode. See  
Function Table for details. All output ranges are with re-  
specttoa5Vreferenceinput.WhenchangingtheLTC1588/  
LTC1589/LTC1592 to a new mode, the command word  
and data are given at the same time (24 or 32 bit). When  
Multiple LTC1588/LTC1589/LTC1592s may be daisy-  
chained together by connecting the SDOpin to the SDI pin  
of the next IC. The clock and CS/LD signals should remain  
common to all ICs in the daisy-chain. The serial data is  
1588992fa  
9
LTC1588/LTC1589/LTC1592  
U
OPERATIO  
1588992fa  
10  
LTC1588/LTC1589/LTC1592  
U
OPERATIO  
CS/LD goes high, the mode changes and the DAC output  
3. Using a 32-bit load sequence, load the bipolar range of  
±10V with the DAC output voltage at 5V initially. Then  
change the DAC output to –5V:  
goes to a value corresponding to the data code.  
Examples using the LTC1592:  
a) CS/LD  
1. Using a 24-bit loading sequence, load the unipolar  
range of 0V to 10V with the DAC output at zero volt:  
b) ClockSDI=XXXXXXXX1011XXXX110000000000  
0000  
a) CS/LD  
c) CS/LD ; then VOUT = 5V on the ±10V range  
b) Clock SDI = 1001 XXXX 0000 0000 0000 0000  
c) CS/LD ; then VOUT = 0V  
Next, the bipolar range of ±10V is retained and the DAC  
output voltage is changed to VOUT = 5V:  
2. Using a 24-bit loading sequence, load the bipolar range  
a) CS/LD  
of ±5V and the DAC output at zero volt:  
b) ClockSDI=XXXXXXXX0010XXXX010000000000  
0000  
a) CS/LD  
b) Clock SDI = 1010 XXXX 1000 0000 0000 0000  
c) CS/LD ; then VOUT = 0V on the ±5V range  
c) CS/LD ; then VOUT = 5V on the ±10V range  
W U U  
U
APPLICATIO S I FOR ATIO  
Op Amp Selection  
Table 4 contains a partial list of LTC precision op amps  
recommended for use with the LTC1592. The easy-to-use  
designequationssimplifytheselectionofopampstomeet  
the system’s specified error budget. Select the amplifier  
from Table 4 and insert the specified op amp parameters  
in Table 3. Add up all the errors for each category to  
determine the effect the op amp has on the accuracy of the  
LTC1592.Arithmeticsummationgivesan(unlikely)worst-  
case effect. A root-sum-square (RMS) summation pro-  
duces a more realistic estimate.  
Because of the extremely high accuracy of the 16-bit  
LTC1592, careful thought should be given to op amp  
selection in order to achieve the exceptional performance  
of which the part is capable. Fortunately, the sensitivity of  
INL and DNL to op amp offset has been greatly reduced  
compared to previous generations of multiplying DACs.  
Tables 2 and 3 contain equations for evaluating the effects  
of op amp parameters on the LTC1592’s accuracy when  
programmed in a unipolar or bipolar output range. These  
are the changes the op amp can cause to the INL, DNL,  
unipolar offset, unipolar gain error, bipolar zero and bipo-  
largainerror. Tables2and3canalsobeusedtodetermine  
the effects of op amp parameters on the LTC1589 and the  
LTC1588. However, the results obtained from Tables 2  
and 3 are in 16-bit LSBs. Divide these results by 4  
(LTC1589) and 16 (LTC1588) to obtain the correct LSB  
sizing.  
Op amp offset will contribute mostly to output offset and  
gain error and has minimal effect on INL and DNL. For the  
LTC1592,a250µVopampoffsetwillcauseabout0.65LSB  
INLdegradationand0.15LSBDNLdegradationwitha10V  
full-scale range (20V range in bipolar). For the LTC1592  
programmed in a unipolar mode, the same 250µV op amp  
offset will cause a 3.3LSB zero-scale error and a 3.3LSB  
gain error with a 10V full-scale range.  
1588992fa  
11  
LTC1588/LTC1589/LTC1592  
W U U  
U
APPLICATIO S I FOR ATIO  
While not directly addressed by the simple equations in  
Tables 2 and 3, temperature effects can be handled just as  
easily for unipolar and bipolar applications. First, consult  
an op amp’s data sheet to find the worst-case VOS and IB  
over temperature. Then, plug these numbers in the VOS  
and IB equations from Table 3 and calculate the tempera-  
ture induced effects.  
Advances Ensure 16-Bit DAC Settling Time,” offers a thor-  
ough discussion of 16-bit DAC settling time and op amp  
selection.  
Precision Voltage Reference Considerations  
Much in the same way selecting an operational amplifier  
for use with the LTC1592 is critical to the performance of  
the system, selecting a precision voltage reference also  
requires due diligence. The output voltage of the LTC1592  
is directly affected by the voltage reference; thus, any  
voltagereferenceerrorwillappearasaDACoutputvoltage  
error.  
For applications where fast settling time is important, Appli-  
cation Note 74, entitled “Component and Measurement  
Table 2. Variables for Each Output Range That Adjust the  
Equations in Table 3  
OUTPUT RANGE  
A1  
1.1  
2.2  
2
A2  
2
A3  
A4  
A5  
1
There are three primary error sources to consider when  
selecting a precision voltage reference for 16-bit applica-  
tions: output voltage initial tolerance, output voltage tem-  
perature coefficient and output voltage noise.  
5V  
10V  
3
1.5  
1.5  
2.5  
1
±5V  
2
1.2  
1.2  
1.6  
1
1
1
±10V  
4
4
Initial reference output voltage tolerance, if uncorrected,  
generates a full-scale error term. Choosing a reference  
±2.5V  
1
1
1
–2.5V to 7.5V  
1.9  
3
0.5  
1.5  
Table 3. Easy-to-Use Equations Determine Op Amp Effects on DAC Accuracy in All Output Ranges  
UNIPOLAR  
BIPOLAR ZERO  
ERROR (LSB)  
UNIPOLAR GAIN  
ERROR (LSB)  
BIPOLAR GAIN  
ERROR (LSB)  
OP AMP  
INL (LSB)  
5V  
DNL (LSB)  
5V  
OFFSET (LSB)  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
V
(mV)  
V
• 2.4 •  
V
• 0.6 •  
V
• 13.2 •  
A3 • V  
OS1  
• 19.8 •  
V
• 13.2 •  
V
• 13.2 •  
OS1  
(V  
(V  
(V  
(V  
(V  
(V  
)
)
)
)
)
)
)
OS1  
OS1  
OS1  
OS1  
OS1  
REF  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
REF  
5V  
(V  
5V  
REF  
I
(nA)  
I
• 0.0003 •  
I
• 0.00008 •  
I
• 0.13 •  
I
• 0.01 •  
0
I
• 0.0018 •  
I
• 0.0018 •  
(V  
(V  
B1  
B1  
B1  
B1  
B1  
B1  
B1  
)
(V  
(V  
(V  
)
)
)
)
REF  
( 16.5k)  
1.5k  
VOL1  
131k  
VOL1  
131k  
VOL1  
A
(V/V)  
(mV)  
A1 •  
A2 •  
0
0
0
0
A5 •  
A5 •  
VOL1  
)
A
(A  
0
)
)
(A  
(A  
VOL1  
5V  
5V  
5V  
REF  
5V  
REF  
V
0
0
0
A4 • V  
• 13.1 •  
V
• 26.2 •  
• 0.1 •  
V
• 26.2 •  
OS2  
OS2  
OS2  
OS2  
(V  
)
(V  
(V  
(
))  
))  
)
REF  
REF  
5V  
5V  
I
(mV)  
0
0
A4 • I • 0.05 •  
I
I
B2  
• 0.1 •  
131k  
B2  
B2  
B2  
(
(V  
REF  
)
)
(V  
(V  
REF  
66k  
131k  
(A  
A
(V/V)  
A4 •  
VOL2  
)
(A  
)
)
(A  
VOL2  
VOL2  
VOL2  
Table 4. Partial List of LTC Precision Amplifiers Recommended for Use with the LTC1588/LTC1589/LTC1592,  
with Relevant Specifications  
AMPLIFIER SPECIFICATIONS  
VOLTAGE  
NOISE  
nV/Hz  
CURRENT  
NOISE  
pA/Hz  
SLEW  
RATE  
V/µs  
GAIN BANDWIDTH  
PRODUCT  
MHz  
t
POWER  
DISSIPATION  
mW  
SETTLING  
V
µV  
I
nA  
A
OL  
V/mV  
with LTC1592  
OS  
B
AMPLIFIER  
LT1001  
µs  
25  
2
800  
10  
14  
14  
2.7  
5
0.12  
0.008  
0.008  
0.3  
0.25  
0.2  
0.16  
4.5  
22  
0.8  
0.7  
120  
120  
115  
19  
46  
11  
LT1097  
50  
0.35  
0.25  
20  
1000  
1500  
4000  
5000  
2000  
LT1112 (Dual)  
LT1124 (Dual)  
LT1468  
60  
0.75  
12.5  
90  
10.5/Op Amp  
69/Op Amp  
117  
70  
75  
10  
0.6  
2.5  
2.5  
LT1469 (Dual)  
125  
10  
5
0.6  
22  
90  
123/Op Amp  
1588992fa  
12  
LTC1588/LTC1589/LTC1592  
U
W U U  
APPLICATIO S I FOR ATIO  
with low output voltage initial tolerance, like the LT1236  
(±0.05%), minimizes the gain error caused by the refer-  
ence; however, a calibration sequence that corrects for  
system zero- and full-scale error is always recommended.  
Grounding  
As with any high resolution converter, clean grounding is  
important. A low impedance analog ground plane and star  
grounding techniques should be used. IOUT2 must be tied  
to the star ground with as low a resistance as possible.  
A reference’s output voltage temperature coefficient af-  
fects not only the full-scale error, but can also affect the  
circuit’s INL and DNL performance. If a reference is  
chosen with a loose output voltage temperature coeffi-  
cient, then the DAC output voltage along its transfer  
characteristic will be very dependent on ambient condi-  
tions. Minimizing the error due to reference temperature  
coefficient can be achieved by choosing a precision  
reference with a low output voltage temperature coeffi-  
cient and/or tightly controlling the ambient temperature  
of the circuit to minimize temperature gradients.  
WhenitisnotpossibletolocatestargroundclosetoIOUT2  
,
a low resistance trace should be used to route this pin to  
star ground. This minimizes the voltage drop from this pin  
to ground caused by the code dependent current flowing  
to ground. When the resistance of this circuit board trace  
becomes greater than 1, a force/sense amplified con-  
figuration should be used to drive this pin (see Figure 2).  
Thispreservestheexcellentaccuracy(1LSBINLandDNL)  
of the LTC1588/LTC1589/LTC1592.  
An Isolated 16-Bit Subsystem Using the LTC1592  
As precision DAC applications move to 16-bit and higher  
performance, reference output voltage noise may contrib-  
ute a dominant share of the system’s noise floor. This in  
turn can degrade system dynamic range and signal-to-  
noise ratio. Care should be exercised in selecting a voltage  
reference with as low an output noise voltage as practical  
for the system resolution desired. Precision voltage refer-  
ences, like the LT1236, produce low output noise in the  
0.1Hz to 10Hz region, well below the 16-bit LSB level in 5V  
or 10V full-scale systems. However, as the circuit band-  
widths increase, filtering the output of the reference may  
be required to minimize output noise.  
ThecircuitinFigure4isacompleteexampleofanoptically  
isolated analog output subsystem that supports most of  
the legacy ranges that are still common in industrial  
environments. This circuit uses only two optoisolators,  
the load pulse (CS/LD) being derived from a series of  
transitions on the data line (SDI) after the clock (SCK) is  
halted high. If a single chip microcontroller with an auto-  
mated SPI interface is to be used, the SPI port can transfer  
the 24 bits as three bytes. Subsequently, the data output  
port pin can be reassigned to general purpose port opera-  
tion and exercised to produce a number of transitions to  
generate the load pulse. Alternatively, the entire sequence  
can be programmed bit by bit with a general purpose port.  
Figure 5 shows the timing.  
Table 5. Partial List of LTC Precision References Recommended  
for Use with the LTC1588/LTC1589/LTC1592 with Relevant  
Specifications  
The DC/DC converter, Figure 3 based on the LT®3439  
ultralow noise transformer driver provides a compact  
means of powering this circuit, and allows the output to  
deliver output current that is only limited by the LT1468  
capabilities. The output capability of the DC/DC converter  
itself is 80mA at ±12V and is available as demo board  
DC511A. This circuit as shown requires approximately  
130mA of the 5V supply (no load). The total surface area  
required is less than 2 square inches.  
INITIAL  
TOLERANCE  
TEMPERATURE  
DRIFT  
0.1Hz to 10Hz  
NOISE  
REFERENCE  
LT1019A-5,  
LT1019A-10  
±0.05%  
±0.05%  
±0.075%  
±0.05%  
5ppm/°C  
5ppm/°C  
10ppm/°C  
10ppm/°C  
12µVP-P  
LT1236A-5,  
LT1236A-10  
3µVP-P  
LT1460A-5,  
LT1460A-10  
20µVP-P  
12µVP-P  
LT1790A-2.5  
1588992fa  
13  
LTC1588/LTC1589/LTC1592  
W U U  
U
APPLICATIO S I FOR ATIO  
ALTERNATE AMPLIFIER FOR OPTIMUM SETTLING TIME PERFORMANCE  
6
I
OUT2  
200  
200Ω  
+
2
3
6
1000pF  
LT1468  
1
2
+
2
3
ZETEX  
BAT54S  
6
I
LT1001  
OUT2  
3
1
2
V
REF  
5V  
ZETEX*  
BAT54S  
5
6
3
+
7
1/2 LT1469  
*SCHOTTKY BARRIER DIODE  
C3**  
150pF  
2
1
16 15  
R2  
3
4
R1  
R
R
REF  
R
COM  
FB  
OFS  
C2  
R1  
R2  
15pF  
0.1µF  
9
15V  
8
V
5V  
CC  
0.1µF  
I
I
5
OUT1  
2
3
1
14  
13  
12  
11  
10  
12-/14-/16-BIT DAC WITH SPAN ADJUST  
LTC1588/LTC1589/LTC1592  
V
1/2 LT1469  
CLR  
CS/LD  
SCK  
SDI  
OUT  
6
7
8
OUT2  
+
4
AGND  
GND  
–15V  
0.1µF  
SDO  
1588992 F02  
**FOR MULTIPLYING APPLICATIONS C3 = 15pF  
Figure 2. Basic Connections for SoftSpan VOUT DAC with Two Optional Circuits  
for Driving IOUT2 from AGND with a Force/Sense Amplifier  
LT1121-5  
5V  
2.2µF  
3
BYP  
LT1761  
IN OUT  
GND ADJ  
C7  
E1  
IN  
5V  
D1  
V
IN  
0.01µF  
V
MMBD914  
1
5
C1  
4.7µF  
6.3V  
12V  
R1  
±5%  
13  
C3  
R4  
442k  
T1  
1M  
D2  
MMBD914  
22µF  
25V  
V
CTX02-16030  
2
4
IN  
11  
5
3
E5  
SHDN  
R10  
10k  
SHDN  
SYNC  
COLA  
C5  
+
+
CER  
33µF  
25V  
R5  
E7  
SYNC  
49.9k  
TANT  
R9  
10k  
AGND  
–12V  
C6  
D3  
MMBD914  
LT3439  
C4  
R6  
33µF  
25V  
TANT  
22µF  
25V  
CER  
49.9k  
6
7
14  
4
1
4
CT  
RT  
COLB  
RSL  
R7  
D4  
MMBD914  
GND ADJ  
LT1964  
IN OUT  
BYP  
C2  
820pF  
442k  
5
R2  
16.9k  
2
R3  
15k  
GND PGND PGND  
10 16  
1588992 F03  
E6  
GND  
C8  
0.01µF  
1
3
C22  
2.2nF  
1kV  
Figure 3. Isolated Power Supplies for the Circuit of Figure 4  
1588992fa  
14  
LTC1588/LTC1589/LTC1592  
U
PACKAGE DESCRIPTIO  
G Package  
16-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
5.90 – 6.50*  
(.232 – .256)  
1.25 ±0.12  
16 15 14 13 12 11 10  
9
7.8 – 8.2  
5.3 – 5.7  
7.40 – 8.20  
(.291 – .323)  
0.42 ±0.03  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
8
1
2
3
4
6
5.00 – 5.60**  
(.197 – .221)  
2.0  
(.079)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
0.05  
(.0035 – .010)  
(.022 – .037)  
0.22 – 0.38  
(.009 – .015)  
(.002)  
G16 SSOP 0802  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
1588992fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC1588/LTC1589/LTC1592  
W U U  
U
APPLICATIO S I FOR ATIO  
OPTIONAL CIRCUIT FOR 2-WIRE INTERFACE.  
FOR A 3-WIRE INTERFACE (SPI), ADD A 3RD  
OPTOISOLATOR TO DRIVE CS/LD WITH THE  
WAVEFORMS OF FIGURE 1  
5V REF  
12V  
8
10µF  
12V  
7
74HC161  
4
3
4
5
6
2
7
10  
9
1
14  
13  
12  
11  
ISOLATED  
CS/LD  
LT1027-5  
2
GND  
A
B
C
D
QA  
QB  
QC  
QD  
0.1µF  
+
2
3
+
10µF  
6
LT1468  
4
10µF  
CLK  
HCPL2300  
HCPL2300  
ENP  
ENT  
LD  
8
7
5V  
5V  
–12V  
0.1µF  
2
3
V
CC  
6
5
15  
R1  
CLR RCO  
150pF  
7.5k  
SCK  
5V  
2
1
16 15  
R2  
3
4
TO  
R1  
R
R
FB  
REF  
R
COM  
OFS  
10µF  
µCONTROLLER  
5V  
8
7
15pF  
R1  
R2  
ISOLATED SCK  
ISOLATED SDI  
2
3
9
V
CC  
12V  
7
V
6
5
CC  
R2  
7.5k  
0.1µF  
I
+
OUT1  
5
2
3
0.1µF  
SDI  
AGND  
6
14  
13  
12  
11  
10  
V
OUT  
12-/14-/16-BIT DAC WITH SPAN ADJUST  
LTC1588/LTC1589/LTC1592  
LT1468  
CLR  
CS/LD  
SCK  
SDI  
10µF  
6
7
8
I
OUT2  
4
–12V  
AGND  
GND  
SDO  
1588992 F04  
0.1µF AGND  
Figure 4. Optically Isolated 16-Bit SoftSpan System  
SCK  
SDI  
C3  
C2  
C1  
C0  
X
D2  
D1  
D0  
CS/LD  
1588992 F05  
Figure 5. Timing Diagram for the Circuit of Figure 4  
RELATED PARTS  
PART NUMBER  
LTC1591/LTC1597  
LTC1595/LTC1596  
LTC1599  
DESCRIPTION  
COMMENTS  
On-Chip 4-Quadrant Resistors  
Parallel 14-/16-Bit Current Output DACs  
Serial 16-Bit Current Output DACs  
2-Byte, 16-Bit Current Output DAC  
Parallel 16-Bit Voltage Outupt DAC  
Octal 16-/14-/12-Bit DACs  
Low Glitch, ±1LSB Maximum INL, DNL  
On-Chip 4-Quadrant Resistors  
LTC1821  
Precision 16-Bit Settling in 2µs for 10V Step  
Single Supply, µPower in Narrow SSOP16  
LTC2600/LTC2610  
LTC2620  
1588992fa  
LT/TP 0503 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC1592ACG

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
Linear System

LTC1592ACG

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
Linear

LTC1592ACG#PBF

LTC1592 - 16-Bit SoftSpan DACs with Programmable Output Range; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1592ACG#TR

LTC1592 - 16-Bit SoftSpan DACs with Programmable Output Range; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1592ACG#TRPBF

暂无描述
Linear

LTC1592AIG

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
Linear System

LTC1592AIG

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
Linear

LTC1592AIG#PBF

LTC1592 - 16-Bit SoftSpan DACs with Programmable Output Range; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1592BCG

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
Linear System

LTC1592BCG

12-/14-/16-Bit SoftSpan DACs with Programmable Output Range
Linear

LTC1592BCG#PBF

LTC1592 - 16-Bit SoftSpan DACs with Programmable Output Range; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1592BCG#TR

LTC1592 - 16-Bit SoftSpan DACs with Programmable Output Range; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear